Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays

Identifieur interne : 009C67 ( Main/Repository ); précédent : 009C66; suivant : 009C68

High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays

Auteurs : RBID : Pascal:06-0279622

Descripteurs français

English descriptors

Abstract

We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 μm up to 32 μm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays will be presented.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0279622

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays</title>
<author>
<name sortKey="Razeghi, M" uniqKey="Razeghi M">M. Razeghi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y. Wei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gin, A" uniqKey="Gin A">A. Gin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hood, A" uniqKey="Hood A">A. Hood</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yazdanpanah, V" uniqKey="Yazdanpanah V">V. Yazdanpanah</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Evanston, IL 60208</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tidrow, M Z" uniqKey="Tidrow M">M. Z. Tidrow</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Missile Defense Agency, 7100 Defense Pentagon</s1>
<s2>Washington, DC 20301</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Washington, DC 20301</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nathan, V" uniqKey="Nathan V">V. Nathan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Air Force Research Laboratory/VSSS, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0279622</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0279622 INIST</idno>
<idno type="RBID">Pascal:06-0279622</idno>
<idno type="wicri:Area/Main/Corpus">008F20</idno>
<idno type="wicri:Area/Main/Repository">009C67</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="main">Proceedings of SPIE--the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Experimental study</term>
<term>Focal plane arrays</term>
<term>Indium arsenides</term>
<term>Infrared detectors</term>
<term>Photoluminescence</term>
<term>Radiation detectors</term>
<term>Superlattices</term>
<term>Thermal imaging</term>
<term>Transmission electron microscopy</term>
<term>X radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Matrice plan focal</term>
<term>Détecteur IR</term>
<term>Détecteur rayonnement</term>
<term>Etude expérimentale</term>
<term>Microscopie force atomique</term>
<term>Microscopie électronique transmission</term>
<term>Imagerie thermique</term>
<term>Rayon X</term>
<term>Superréseau</term>
<term>Composé binaire</term>
<term>Indium arséniure</term>
<term>InAs</term>
<term>As In</term>
<term>0757K</term>
<term>0779L</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 μm up to 32 μm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays will be presented.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>5783</s2>
</fA05>
<fA06>
<s3>p.1</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Infrared technology and applications XXXI : 28 March-1 April 2005, Orlando, Florida, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>RAZEGHI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WEI (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GIN (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOOD (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YAZDANPANAH (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TIDROW (M. Z.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NATHAN (V.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ANDRESEN (Bjørn F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>FULOP (Gabor F.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center for Quantum Devices, Department of Electrical and Computer Engineering Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Missile Defense Agency, 7100 Defense Pentagon</s1>
<s2>Washington, DC 20301</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Air Force Research Laboratory/VSSS, Kirtland AFB</s1>
<s2>NM 87117</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>86-97</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>0-8194-5768-X</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000138729660100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0279622</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE--the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 μm up to 32 μm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays will be presented.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Matrice plan focal</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Focal plane arrays</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Détecteur rayonnement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Radiation detectors</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Imagerie thermique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thermal imaging</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Rayon X</s0>
<s5>37</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>X radiation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Superréseau</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Superlattices</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>0779L</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>177</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Infrared technology and applications. Conference</s1>
<s2>31</s2>
<s3>Orlando FL USA</s3>
<s4>2005-03-28</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009C67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 009C67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:06-0279622
   |texte=   High performance type II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024